
Spring 1997, Physics 2321

Programming with FORTRAN and/or C

I. Objective..1
II. Introduction...1
III. Exercises...1

A. Running FORTRAN or C Programs in the UNIX Environment...1
B. Waves in a Wire...2
C. Numerical Solution Using Numerov Algorithm...4
D. Writing the Program ...4
E. Running the Program..11

IV. Appendix 1: The Numerov Algorithm... 12
V. Appendix 2: Complete FORTRAN Code for Numerov Program..12
VI. Appendix 2: Complete C Code for Numerov Program...14

I. Objective
To learn the basic commands needed to write FORTRAN and/or C programs.
II. Introduction
Up to this point we have seen that many interesting physics problems may be solved within
available software packages without any programming at all. However, there are several occasions
when obtaining a numerical solution requires one to write a program:
• When the problem is very specialized. Research often presents problems that are very specific

in nature for which software packages do not exist.
• When the problem is too big for existing software. The solution of a 100 x 100 set of coupled

linear equations is typically too big for Maple. In this case writing a program would make sense.
• When the problem requires high computation speed. A program dedicated to a single task will

typically run faster than a general application designed to handle many different problems.
 In today’s exercises we will extend what you learned in Physics 221 for wave motion in a wire
of uniform mass density to the case of a non-uniform wire. We will solve the problem numerically
by writing a program in FORTRAN or C on the Project Vincent workstations, and calculate the
frequencies and wave functions of the resonant standing wave modes. We begin by showing some
essential operations in the UNIX environment.
III. Exercises

A. Running FORTRAN or C Programs in the UNIX Environment
Objective: To gain familiarity with compiling and running FORTRAN

or C programs, and graphing data on Vincent.
Where to begin: on Project Vincent
What to do: follow the instructions below
What to turn in to your instructor: nothing: for your information only
What to put in log book: any problems you have and how you solve them

(1) Copy Files from the Physics 232 Locker: We placed several files you may use for today’s
activities in the Physics 232 locker. Go to the locker (to access the locker type add physics
and then go to the directory /home/physics/phys232). Copy the files in (or in.txt), aaa,
numerov.f, and test.f (or numerov.c and test.c) to your working directory.

(2) Running FORTRAN Programs: Suppose we wish to run the FORTRAN program test.f
(note that FORTRAN program names must end with the extension .f) that reads a variable from
the input file aaa. First the program must be compiled and linked. This is done by typing:

f77 -o testf test.f

Spring 1997, Physics 2322

Command What it does
f77 -o testf test.f compiles the FORTRAN program test.f, links the object file, and

creates an executable file called testf.

Running C Programs: Suppose we wish to run the C program test.c (note that C program
names must end with the extension .c) that reads a variable from the input file aaa. First the
program must be compiled and linked. This is done by typing:
cc -o testc test.c

Command What it does
cc -o testc test.c compiles the C program test.c, links the object file, and creates an

executable file called testc.

The program testf (or testc) calculates the quantity aN2 , where a is a number specified in the
input file aaa and N is an integer from 0 to 10. Set a to the value 1 by editing aaa using the
command: joe aaa

Command What it does
joe aaa uses the joe editor to open the file aaa. The editor commands may

be displayed by typing ^k^h (control-k control-h).

To run the FORTRAN program and store the data in the file fort.8, type: testf < aaa
To run the C program and store the data in the file out, type: testc < aaa > out

Command What it does
testf < aaa runs the executable file testf which reads the input file aaa.

testc < aaa > out runs the executable file testc which reads aaa and writes to out.

(3) Graphing Data Files: The output of the program was written to a file called fort.8 (or out).
To graph the contents of this two column file type: xgraph fort.8 (or xgraph out).

Command What it does
xgraph fort.8 graphs the data in fort.8.
xgraph out graphs the data in out.

B. Waves in a Wire
Objective: to outline the physics of today’s problem.
What to do: read the material below and derive the stated equations.
What to turn in to your instructor: your log book.
What to put in log book: derivations from this exercise.

(1) Finding vibrational frequencies in a uniform wire using the shooting method: In PHY
221 (Serway, 22.5) you learned that a wave traveling in a uniform wire of linear mass density

under a constant tension T has a frequency given by f
k T

=
2

, where the wave number k is

defined as k =
2

. The transverse displacement y of the wire as a function of position x is

given by
d y
dx

k y
2

2
2 0+ = .

Spring 1997, Physics 2323
If the wire is fixed at both ends then one has the boundary conditions y(0)=y(L)=0 and one
finds that resonant standing waves in the wire occur for discrete values of k (since L needs to

be a multiple of λ/2), and therefore discrete frequencies f
k T

=
2

. If one wanted to

numerically determine those values of k for which the resonant standing waves occur, one
could start with the two boundary conditions at the left end of the wire, y(0) and y’(0), guess
an approximate value of k, numerically solve for the function y over the interval [0,L], and
then check to see how close y(L) was to 0, the desired boundary condition. If the difference
were not acceptable, a new guess for k could be made and a new y(L) calculated until
y L() ≈ 0 within an acceptable tolerance. This trial and error approach is called the shooting
method and is the method we will use to determine the resonant frequencies of a non-uniform
wire (which we cannot calculate analytically).

(2) Vibrations of a non-uniform wire: Suppose that two pieces of wire of equal length with
masses per unit length 1 and 2 are joined to form one piece of total length L=1 m. The wire
is then placed under a tension T and its ends are fixed, as shown in the figure. Suppose that

1 =0.001 kg/m, 2 =0.002 kg/m, L=1 m, and T=100 N . Suppose also that our coordinates are
as shown

 1 2

xinit=0.0 m xmid=0.5 m xfin=1.0 m

in the Figure above. We wish to study the resonant standing waves in this wire and determine
the frequencies of the vibrational modes.

(3) Defining the problem mathematically: We therefore wish to solve the differential equation

()d y
dx

k x y
2

2

2 0+ =

for the case of the non-uniform wire, where k(x) is a function that may be written as

k x
k

() =

≤ ≤

≤

k if 0 x

 if < x 1

1

2

1

1
2

1
2

1

Since the differential equation does not have constant coefficients (i.e., k is a function of x), we
can only solve it numerically. We will use the boundary values y(0)=0 and y’(0), along with an
initial guess for k, to solve for the values of y over the interval [0,1].

(4) Derivation: Show in your log book that, because the two parts of the wire vibrate with the
same frequency, the following formula holds:

k
k

2

1

2

1

=

Spring 1997, Physics 2324
C. Numerical Solution Using Numerov Algorithm

Objective: to set up the algorithm we will use to solve the

differential equation
d y
dx

k y
2

2
2 0+ = .

Where to begin: here.
What to do: follow the instructions below.
What to turn in to your instructor: your log book.
What to put in log book: derivation of the equations specified below.

(1) The Algorithm: Once the differential equation and the boundary conditions at some point are
determined, the differential equation may be solved numerically. Differential equations of the
general form

d y
dx

k x y S x
2

2
2+ =() ()

may be solved using the Numerov algorithm (see Appendix 1 for the recursion formulas). In
your log book, show that the Numerov recursion formulas for the case of S(x)=0 become

y y
h k

y h1 0

2
0
2

01
2

= −

 + ′

y
h k

h k
y

h k
yi

i

i
i

i
i=

+

−

 − +

−
−

−
−

1

1
12

2 1
5

12
1

122 2

2
1

2

1

2
2

2

2

D. Writing the Program

Objective: to write a FORTRAN (or C) program to numerically
determine the frequencies and wave functions for the
resonant standing waves in a non-uniform wire.

Where to begin: on Vincent.
What to do: follow the instructions below.
What to turn in to your instructor: your log book.
What to put in log book: the time you begin your work, problems you encounter,

solutions you find.

Keep in mind the following general rules for programming in FORTRAN and C:

FORTRAN Rules
A letter C in the first column of a line indicates that a comment will follow. The FORTRAN
compiler will skip the rest of the line (ignore it).
Array dimensions must be specified at the beginning of a FORTRAN routine.
Variables may be declared at the beginning of a FORTRAN routine. Undeclared variable names
that begin with letters A-H and O-Z are understood to be real and single precision. Undeclared
variables beginning with letters I-N are understood to be integers.
Only one statement per line, fixed format of program.
Indent all FORTRAN statements at least six spaces (except when using labels to identify lines).

Spring 1997, Physics 2325

C Rules
Comments begin with /* and end with the next */. They are skipped (ignored) by the compiler.
Each program must have exactly one function called int main(int argc, char *argv[]).
All variables (simple and arrays) and functions must be declared at the beginning of a block.
All statements must end with a semicolon ; More than statement per line allowed.
Blocks (including functions) must begin and end with curly brackets { }.

(1) Planning the Program: The program you write should have the following general outline:

(2) Creating the Main Program: To begin writing the main program, type the command joe
num.f (or joe num.c). Type the following lines (for FORTRAN):

ccc
c Numerov Algorithm
ccc
 dimension x(10000),y(10000)
 character a
 common/one/ xk1,xk2,xinit,xmid,xfin

Statement What it does
dimension
x(10000),y(10000)

creates two arrays x and y of dimension 1x10000 (i.e., vectors with 10000
components).

character a creates a variable a that contains ASCII characters (letters and symbols).
common /one/ makes the variables following the common statement available to all

subroutines in the program that include the same common statement. The
symbol /one/ is a name (any other name will do as long as it begins with a
letter) that distinguishes different common statements (though in this
program there is only one).

Read an input file called in for the
variables

T, 1 , 2 , y(0), y’(0), y(L), k1

Xinit, Xmid, Xfin, # Intervals

Start

Calculate y(xn) for all values
0 ≤ ≤x L

Calculate the vibrational frequency

using f T k
=

1

1

2

Write the quantities f, x, and y
to an output file

End

Spring 1997, Physics 2326
Type the following lines as your skeleton for the Numerov program in C:

#include <stdio.h>
#include <math.h>
double xk1=0.0, xk2=0.0, xinit=0.0, xmid=0.0, xfin=0.0;
double wav(double);
void Numerov(double, double, double, double, int, double*,
double[], double[]);
/**
***********/
int main(int argc, char *argv[])
{
 double x[10000], y[10000];
 double T=0.0, rho1=0.0, rho2=0.0, y0=0.0, Dy0=0.0, yL=0.0;
 int N=0, i=0;
 double pi=3.1415926, ymax=0.0, delta=0.0, freq=0.0;
 char line[100];

 return 0;
}

Statement What it does
#include <...> Include headers for math functions (sqrt) or file input/output.
double, int, void define variables, either global or in a block { }, may have initializers =
double
wav(double);

Function prototype, the actual code comes later in the file.

{ } Curly brackets mark the begiining and end of a block (e.g., function)
int main(int, char*) Main function. Program execution starts here.
return 0; Return to calling function (or the operating system).
char line[100]; Allocate an array of characters with 100 elements.

(3) Reading the Input File: The input file in contains all of the information about the physical
parameters, boundary conditions, and the number line. If you view the contents of the file (type
more in), you will see several lines of text separating lines of numbers. The text in the file
serves only to remind us what the numbers represent. In reading the file, therefore, we wish
only to extract the numbers. To do this type the following lines (for FORTRAN):

 read(5,10) a,a,a
 read(5,*) T,rho1,rho2
 read(5,10) a,a,a,a
 read(5,*) y0,Dy0,yL
 read(5,10) a,a,a,a
 read(5,*) xk1
 read(5,10) a,a,a,a
 read(5,*) xinit,xmid,xfin,N
10 format(a1)

Statement What it does
 read(5,10) a,a,a

 10 format(a1)

opens the input file (which is designated by the 5), and reads three
character strings that are one character long (specified by the
symbol a1). This is how the text lines are skipped.

 read(5,*)
T,rho1,rho2

reads the numbers and assigns them to the variables T, rho1, and
rho2

Spring 1997, Physics 2327
For the C program, type the following lines:

FILE *i_file; /* declare variable for file I/O */
i_file=fopen("in.txt","r"); /* open file for reading */
for (i=0; i<3; i++) fgets(line,sizeof(line),i_file); /* skip 3 lines */
fgets(line,sizeof(line),i_file); /* read one line, store in line */
sscanf(line,"%lf %lf %lf",&T, &rho1, &rho2);
 /* parse line and read variables */
for (i=0; i<4; i++) fgets(line,sizeof(line),i_file);
fgets(line,sizeof(line),i_file);
sscanf(line,"%lf %lf %lf", &y0, &Dy0, &yL);
for (i=0; i<4; i++) fgets(line,sizeof(line),i_file);
fgets(line,sizeof(line),i_file);
sscanf(line,"%lf",&xk1);
for (i=0; i<4; i++) fgets(line,sizeof(line),i_file);
fgets(line,sizeof(line),i_file);
sscanf(line,"%lf %lf %lf %d",&xinit,&xmid,&xfin,&N);
fclose(i_file); /* close file, we are done */

Statement What it does
FILE *i_file; Define a variable (pointer to file) for file I/O.
i_file=fopen(“in.txt”,”r”); Open file with given name for reading only (“r”)
for (i=0; i<3; i++) block Repeat block for i=0, i=1, and i=2. Start with i=0; continue as long

as i<3; increment i by 1 (i++) after each loop. block is either one
statement or many statements enclosed by { } .

fgets(line,n,i_file); read one line from i_file, store in line, no more than n characters.
sizeof(line) the maximum number of characters to be stored in line (100)
sscanf(line, format,pointers
)

Parse line according to format and store variables in pointers

%lf format string for a long floating point number (double precision)
&T pointer to T, i.e., the address of T, needed to return parameters
fclose(i_file); close the file.

(4) Performing the Calculations: We now wish to write the part of the program that calculates
the function y(x), the frequency f, and writes the values of x and y to an output file. Type the
following (for the FORTRAN program):

 xk2=xk1*sqrt(rho2/rho1)
 pi=3.1415926
 ymax=0.
 call numerov(xinit,y0,Dy0,xfin,N,ymax,x,y)

 delta=(y(N)-yL)/ymax
 freq=sqrt(T/rho1)*xk1/2/pi

 write(7,*) 'Delta = ',delta
 write(7,*) 'Frequency = ',freq
 do i=0,N
 write(7,*) x(i),y(i)
 enddo
 end

Spring 1997, Physics 2328

Statement What it does
call numerov() Calls a subroutine numerov that performs the calculations of

the Numerov algorithm. The variables xinit, y0, Dy0, xfin, and
N are known at the time of the call and are passed to the
routine. The variables ymax, x, y are calculated by the
subroutine and passed back to the main program. Note x and y
are arrays.

delta=(y(N)-yL)/ymax calculates by how much the final value of y misses the specified
boundary condition yL as a fraction of the maximum value of
the wave function

freq=sqrt(T/rho1)*xk1/2/pi calculates the vibration frequency from the relation

f T k=
1

1

2
write(7,*) ‘Delta=‘,delta writes the value of delta to an output file that FORTRAN will

call fort.7
 do i=0,N
 write(7,*) x(i),y(i)
 enddo

a do loop that writes the values of x and y to the file fort.7 for
values of the index i from 0 to N (the indentation in front of the
write is not necessary, but makes the program easier to read).

end signals that the main program has ended; defines the boundary
of the program to which the variable names apply

In C, you might write the following:

 xk2=xk1*sqrt(rho2/rho1);
 Numerov(xinit,y0,Dy0,xfin,N,&ymax,x,y);
 delta=(y[N]-yL)/ymax;
 freq=sqrt(T/rho1)*xk1/2/pi;
 printf("Delta = %lf\n",delta);
 printf("Frequency = %lf\n",freq);
 for (i=0; i<=N; i++) { printf("%lf %lf\n",x[i],y[i]); }

Statement What it does
Numerov(xinit,y0,Dy0,xfin,N

,&ymax,x,y);
calls a function Numerov() that performs the calculations of the
Numerov algorithm. The variables xinit, y0,Dy0,xfin, and N
are known at the time of the call, and are passed by value. The
variables ymax, x, y are calculated by the functions and passed
back to the main program through pointers (by reference). Note
that x and y are arrays, therefore they are passed using
pointers by default.

delta=(y[N]-yL)/ymax; calculates by how much the final value of y misses the specified
boundary condition yL as a fraction of the maximum value of
the wave function

freq=sqrt(T/rho1)*xk1/2/pi; calculates the vibration frequency from the relation

f T k=
1

1

2
printf("Delta = %lf\n",
delta);

writes the value of delta to the standard ouput file (screen). Use
piping > to write to a file on your disk. \n means new line.

for (i=0; i<=N; i++) {
printf("%lf %lf\n",x[i],y[i]); }

a for loop that writes the values of x and y to the file std for
values of the index i from 0 to N. Note the format string %lf.

Spring 1997, Physics 2329
Array elements are addressed using angular brackets [].

(5) Writing the Numerov Subroutine: We now wish to write the subroutine that performs the
recursion relation of the Numerov algorithm. The subroutine is written to accept the initial vales
xi, yi, Dyi, xf, N and to calculate x and y and determine the maximum y value ymax. One
way to write the subroutine (in FORTRAN) is as follows:

 subroutine numerov(xi,yi,Dyi,xf,N,ymax,x,y)
 dimension x(10000),y(10000)
 dx=(xf-xi)/N

 do i=0,N
 if(i.eq.0) then
 x(0)=xi
 y(0)=yi
 if (abs(y(0)).gt.ymax) ymax=abs(y(0))
 else if(i.eq.1) then
 x(1)=x(0)+dx
 xk=wav(x(0))
 y(1)=yi*(1-dx*dx*xk*xk/2)+Dyi*dx
 if (abs(y(1)).gt.ymax) ymax=abs(y(1))
 else
 x(i)=x(i-1)+dx
 xk0=wav(x(i))
 xk1=wav(x(i)-dx)
 xk2=wav(x(i)-2*dx)
 y(i)=1/(1+dx*dx*xk0*xk0/12)*
 + (2*(1-5*dx*dx*xk1*xk1/12)*y(i-1)
 + -(1+dx*dx*xk2*xk2/12)*y(i-2))
 if (abs(y(i)).gt.ymax) ymax=abs(y(i))
 endif
 enddo
 end

Statement What it does
subroutine numerov () begins the subroutine numerov
dimension x(10000),y(10000) dimension statements are needed in all subroutines that

use arrays
 if(i.eq.0) then
 (process A)
 else if(i.eq.1) then
 (process B)
 else
 (process C)
 endif

this is a conditional . If i=0 then process A is performed
and the program goes to endif. If i=1 then process B is
performed and the program goes to endif. Otherwise
process C is performed and the program goes to endif

xk=wav(x(i)) determines the value of the wave number wav at the point
x(i) and assigns the number to the variable xk

 y(i)=1/(1+dx*dx*xk0*xk0/12)*
+ (2*(1-5*dx*dx*xk1*xk1/12)*y(i-
1)
+ -(1+dx*dx*xk2*xk2/12)*y(i-2))

calculates the Numerov recursion relation. Note that when
a formula will not fit on one line, it may be wrapped over
several lines by placing any desired character (in this case
+) in the sixth column

dx*dx I have used dx*dx instead of dx^2. The first may be
calculated more quickly than the second.

Spring 1997, Physics 23210
return or end all subroutines in FORTRAN must end with these lines

Spring 1997, Physics 23211

In C, the Numerov subroutine could be implemented as follows:

void Numerov(double xi, double yi, double Dyi, double xf, int N,
 double *ymax, double x[], double y[])
{
 double dx=0.0, xk=0.0, xxk0=0.0, xxk1=0.0, xxk2=0.0;
 int i=0;
 dx=(xf-xi)/N;

 for (i=0; i<=N; i++) {
 if (i==0) {
 x[0]=xi;
 y[0]=yi;
 if (fabs(y[0])>*ymax) *ymax=fabs(y[0]);
 } else if (i==1) {
 x[1]=x[0]+dx;
 xk=wav(x[0]);
 y[1]=yi*(1-dx*dx*xk*xk/2)+Dyi*dx;
 if (fabs(y[1])>*ymax) *ymax=fabs(y[1]);
 } else {
 x[i]=x[i-1]+dx;
 xxk0=wav(x[i]);
 xxk1=wav(x[i]-dx);
 xxk2=wav(x[i]-2*dx);
 y[i]=1/(1+dx*dx*xxk0*xxk0/12)*
 (2*(1-5*dx*dx*xxk1*xxk1/12)*y[i-1]
 -(1+dx*dx*xxk2*xxk2/12)*y[i-2]);
 if (fabs(y[i])>*ymax) *ymax=fabs(y[i]);
 }
 }
 return;
}

Statement What it does
void Numerov () Defines function Numerov of type void (no function result

returned) and parameters passed.
double x[], double y[] The arrays can have any length
if (i==0) {
 (block A)
} else if (i==1) {
 (block B)
} else {
 (block C)
} /* endif */

This is a conditional statement . If i=0 then block A is
executed. If i=1, then block B is executed. Otherwise block
C is executed.
Note that an equal-to condition is written as (i==1) to
distinguish between condition and assignment i=1. The
condition is enclosed in (). The statements to be executed
(blocks) are enclosed by { }.

xk=wav(x[0]); determines the value of the wave number wav at the point
x[i] and assigns the number to the variable xk

y[i]=1/(1+dx*dx*xxk0*xxk0/12)*
 (2*(1-5*dx*dx*xxk1*xxk1/12)*y[i-
1]
 -(1+dx*dx*xxk2*xxk2/12)*y[i-
2]);

Calculates the Numerov recursion relation. Note that
when a formula will not fit on one line, it may be wrapped
over several lines without problems. Note that we have
added variables xxk0, xxk1, xxk2 not in the FORTRAN
code.

dx*dx C does not have an exponent operator ^ like FORTRAN.
return; Return to calling function.

Spring 1997, Physics 23212

(6) Writing the function wav(): The last task is to define the function k(x). This will be
calculated in the function wav(). One way to do this (in FORTRAN) is shown below:

ccc
 function wav(x)
 common/one/ a,b,c,d,e

 if (x.ge.c.and.x.le.d) then
 wav=a
 else if (x.ge.d.and.x.le.e) then
 wav=b
 endif
 return
 end
Statement What it does
function wav (x) begins the function subroutine wav
common/one/ a,b,c,d,e makes the variables xk1, xk2, xinit, xmid, xfin in the main

routine common (accessible) to the function subroutine. The
assignment is in the order listed so that a=xk1, b=xk2,
c=xinit, d=xmid, e=xfin

return or end all subroutines in FORTRAN must end with these lines

In C, you could simply write
double wav(double x)
{
 if ((x>=xinit) && (x<=xmid)) return xk1;
 else if ((x>=xmid) && (x<=xfin)) return xk2;
 else return 0.0;
}

Statement What it does
double wav (double x) In C, functions and subroutines are the same.
double xk1=0.0, xk2=0.0,
xinit=0.0, xmid=0.0,
xfin=0.0;

The variables xk1, xk2, xinit, xmid, xfin were defined as
global variables at the very beginning, therefore they are
known to all functions in the program. No COMMON blocks!

else return 0.0; Since the block to be executed here has only one statement,
we do not need the { } brackets (but they are allowed).

&& logical AND operator

E. Running the Program
Objective: To determine the frequencies and wave functions for

the resonant standing waves in a non-uniform wire.
Where to begin: On Vincent.
What to do: Follow the instructions below.
What to turn in to your instructor: Your log book, including the standing wave frequencies

you determine, graphs of the modes of vibration.
What to put in log book: The time you begin your work, problems you encounter,

solutions you find.

(1) Compiling and running the program: In FORTRAN, you simply type

f77 -o numerov numerov.f

Spring 1997, Physics 23213
to compile and link the program.

In C, you need to say

cc -o numerov numerov.c /usr/lib/libm.a

otherwise the linker (loader) will not find the math library libm.a that contains the square root.
(Don’t you hate UNIX by now! Borland or IBM would never expect you to type this on your PC).

(2) Checking the Results: There are several ways the program may be checked. First, if the
wire were uniform, you learned in Physics 221 that the standing wave will have k values given by
k nn = and y(x)=sin(knx). Make the necessary changes in the and k values of the input file and
check if you get the expected results.

Think of another check you can do to test your program. Comment on your results.

(3) Finding the Resonant Frequencies for the Non-uniform Wire: For N=100, run your
program for the parameter values given in problem III.B.1. Use the shooting method described in
III.B.2 to determine the first three resonant frequencies of the system. You may use xgraph to
plot your results and see how close your guess for k1 brought you to the final boundary condition.
Print out the graphs for the first three standing wave modes.

IV. Appendix 1: The Numerov Algorithm

Equations of the form

d y
dx

k x y S x
2

2
2+ =() ()

may be solved for y(x) for points on the axis using the Numerov Algorithm 1 if the boundary
conditions y(x0), y’(x0) are known at some point x0.. The axis is divided into N intervals of equal

length h
x x

N
N=

− 0 as shown below. This method may be summarized by the recursion

h

 x0 x1 x2 xN

relations in the table below. We use the notation y y xi i≡ () , ′ = ′y y xi i() and similar notation for
ki and Si.

Numerov Algorithm Recursion Relations for y0, y1, and yi

y y x0 0= ()

y y y h
k y S

h1 0 0
0
2

0 0 2

2
= + ′ +

− +()

()y
h k

h
S S S

h k
y

h k
yi

i
i i i

i
i

i
i=

+

+ + + −

 − +

− −
−

−
−

−
1

1
12

12
10 2 1

5
12

1
122 2

2

1 2

2
1

2

1

2
2

2

2

1 See S. E. Koonin, Computational Physics, Chapter 3, for a complete description.

Spring 1997, Physics 23214
V. Appendix 2: Complete FORTRAN Code for Numerov Program

cc
c
c Numerov Algorithm
c
cc
 dimension x(10000),y(10000)
 character a
 common/one/ xk1,xk2,xinit,xmid,xfin

 read(5,10) a,a,a
 read(5,*) T,rho1,rho2
 read(5,10) a,a,a,a
 read(5,*) y0,Dy0,yL
 read(5,10) a,a,a,a
 read(5,*) xk1
 read(5,10) a,a,a,a
 read(5,*) xinit,xmid,xfin,N
10 format(a1)

 xk2=xk1*sqrt(rho2/rho1)
 pi=3.1415926
 ymax=0.
 call numerov(xinit,y0,Dy0,xfin,N,ymax,x,y)

 delta=(y(N)-yL)/ymax
 freq=sqrt(T/rho1)*xk1/2/pi
 write(7,*) 'Delta = ',delta
 write(7,*) 'Frequency = ',freq
 do i=0,N
 write(7,*) x(i),y(i)
 enddo
 end
ccc
 subroutine numerov(xi,yi,Dyi,xf,N,ymax,x,y)
 dimension x(10000),y(10000)

 dx=(xf-xi)/N
 do i=0,N
 if(i.eq.0) then
 x(0)=xi
 y(0)=yi
 if (abs(y(0)).gt.ymax) ymax=abs(y(0))
 else if(i.eq.1) then
 x(1)=x(0)+dx
 xk=wav(x(0))
 y(1)=yi*(1-dx*dx*xk*xk/2)+Dyi*dx
 if (abs(y(1)).gt.ymax) ymax=abs(y(1))
 else
 x(i)=x(i-1)+dx
 xk0=wav(x(i))
 xk1=wav(x(i)-dx)
 xk2=wav(x(i)-2*dx)
 y(i)=1/(1+dx*dx*xk0*xk0/12)*
 + (2*(1-5*dx*dx*xk1*xk1/12)*y(i-1)
 + -(1+dx*dx*xk2*xk2/12)*y(i-2))
 if (abs(y(i)).gt.ymax) ymax=abs(y(i))
 endif
 enddo
 return
 end
cc

Spring 1997, Physics 23215
 function wav(x)
 common/one/ a,b,c,d,e
 if (x.ge.c.and.x.le.d) then
 wav=a
 else if (x.ge.d.and.x.le.e) then
 wav=b
 endif
 return
 end

VI. Appendix 3: Complete C Code for Numerov Program
/***/
/* Numerov algorithm, for PHY 232, by Stefan Zollner and Anand Shastri */
/***/

/* Without these include statements, the C compiler is pretty dumb and does
not know how to calculate a square root or write to a file. */
#include <stdio.h>
#include <math.h>

/* define and initialize global variables (accessible in all functions) */
double xk1=0.0, xk2=0.0, xinit=0.0, xmid=0.0, xfin=0.0;

/* define function prototypes for functions at the end of the file. */
double wav(double);
void Numerov(double, double, double, double, int, double*, double[], double[]);
/***/
/* The main() function is next. */
int main(int argc, char *argv[])
{
 double x[10000], y[10000];
 double T=0.0, rho1=0.0, rho2=0.0, y0=0.0, Dy0=0.0, yL=0.0;
 int N=0, i=0;
 double pi=3.1415926, ymax=0.0, delta=0.0, freq=0.0;
 char line[100];
 FILE *input_file=NULL, *output_file=NULL;

/* reading the input file */
 input_file=fopen("in.txt","r"); /* open file for reading */

 for (i=0; i<3; i++) fgets(line,sizeof(line),input_file);
/* read one line and store it in array line[] */
 fgets(line,sizeof(line),input_file);
 sscanf(line,"%lf %lf %lf",&T, &rho1, &rho2);
 for (i=0; i<4; i++) fgets(line,sizeof(line),input_file);
 fgets(line,sizeof(line),input_file);
 sscanf(line,"%lf %lf %lf", &y0, &Dy0, &yL);
 for (i=0; i<4; i++) fgets(line,sizeof(line),input_file);
 fgets(line,sizeof(line),input_file);
 sscanf(line,"%lf",&xk1);
 for (i=0; i<4; i++) fgets(line,sizeof(line),input_file);
 fgets(line,sizeof(line),input_file);
 sscanf(line,"%lf %lf %lf %d",&xinit,&xmid,&xfin,&N);
 fclose(input_file);
/* performing the calculations */
 xk2=xk1*sqrt(rho2/rho1);
 Numerov(xinit,y0,Dy0,xfin,N,&ymax,x,y);
 delta=(y[N]-yL)/ymax;
 freq=sqrt(T/rho1)*xk1/2/pi;

 printf("Delta = %lf\n",delta);
 printf("Frequency = %lf\n",freq);
 output_file=fopen("outs.txt","w");

Spring 1997, Physics 23216
 for (i=0; i<=N; i++) { fprintf(output_file,"%lf %lf\n",x[i],y[i]); }
 fclose(output_file);
 return 0;
};
/***/
/* The Numerov() function is next. */
void Numerov(double xi, double yi, double Dyi, double xf, int N,
 double *ymax, double x[], double y[])
{
 double dx=0.0, xk=0.0, xxk0=0.0, xxk1=0.0, xxk2=0.0; int i=0;
 dx=(xf-xi)/N;

 for (i=0; i<=N; i++) {
 if (i==0) {
 x[0]=xi; y[0]=yi;
 if (fabs(y[0])>*ymax) *ymax=fabs(y[0]);
 } else if (i==1) {
 x[1]=x[0]+dx; xk=wav(x[0]);
 y[1]=yi*(1-dx*dx*xk*xk/2)+Dyi*dx;
 if (fabs(y[1])>*ymax) *ymax=fabs(y[1]);
 } else {
 x[i]=x[i-1]+dx;
 xxk0=wav(x[i]); xxk1=wav(x[i]-dx); xxk2=wav(x[i]-2*dx);
 y[i]=1/(1+dx*dx*xxk0*xxk0/12)*(2*(1-5*dx*dx*xxk1*xxk1/12)*y[i-1]
 -(1+dx*dx*xxk2*xxk2/12)*y[i-2]);
 if (fabs(y[i])>*ymax) *ymax=fabs(y[i]);
 }
 }
 return;
}
/***/
/* Finally, the function wave(). */
/* return first mass density in first section of string,
 second mass density in second section of string, 0 outside */
double wav(double x)
{
 if ((x>=xinit) && (x<=xmid)) { return xk1; }
 else if ((x>=xmid) && (x<=xfin)) { return xk2; }
 else { return 0.0; }/* endif */
}
/***/

